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Within the theory of linear magnetoelectroelasticity, the fracture analysis of a magneto – electrically 

dielectric crack embedded in a magnetoelectroelastic layer is investigated. The prescribed displacement, electric 
potential and magnetic potential boundary conditions on the layer surfaces are adopted. Applying the Hankel 
transform technique, the boundary – value problem is reduced to solving three coupling Fredholm integral 
equations of second kind. These equations are solved exactly. The corresponding semi – permeable crack – face 
magnetoelectric boundary conditions are adopted and the electric displacement and magnetic induction of crack 
interior are obtained explicitly. This field inside the crack is dependent on the material properties, applied 
loadings, the dielectric permittivity and magnetic permeability of crack interior, and the ratio of the crack length 
and the layer thickness. Field intensity factors are obtained as explicit expressions. 

 

Key words: magneto electro elastic layer, Penny –shaped crack, dielectric crack, field intensity factors, exact 
solution. 

 
1. Introduction 

 
 Materials having magnetoelectroelastic coupling effects have found increasing applications in 
engineering structures, particularly in smart materials intelligent structures. The effects of 
magnetoelectromechanical coupling have been observed in single phase materials where simultaneous 
magnetic and electric ordering coexists and in two phase composites where the participating phases are 
piezoelectric and piezomagnetic. These “smart” materials are extensively used as electric packaging, sensors 
and actuators, magnetic field probes, acoustic and ultrasonic devices, hydrophones and transducers with the 
responsibility of electromagnetomechanical energy conversion. When subjected to mechanical, magnetic and 
electrical loads in service, these magnetoelectroelastic composites can fail prematurely due to some defects, 
namely cracks, holes and others, arising during their manufacturing processes. Therefore, it is of great 
importance to study the magnetoelectroelastic interaction and fracture behaviours of magnetoelectroelastic 
materials. On the other hand, composites consisting of piezoelectric and piezomagnetic components have 
found their ways increasingly in applications in engineering structures. This is because these composites 
have some new properties of magnetoelectricity with the secondary piezoelectric effects which are not found 
in single phase piezoelectric or piezomagnetic materials. In some cases, the magnetoelectric effect of 
piezoelectric / piezomagnetic composites can be obtained by a hundred times longer than that of a single 
phase magnetoelectric material. Recently, Chen et al. (2004) derived a general solution for a transversely 
isotropic electromagnetothermoelastic material. In consequence, the components of the coupled field are 
expressed by five mono harmonic functions. More recently, a penny shaped crack in a magnetoelectroelastic 
material has been considered. For example, Zhao et al. (2006) analyzed a penny shaped crack in a 
magnetoelectroelastic medium. Niraula and Wang (2006) derived an exact closed form solution for a penny 
shaped crack in a magnetoelectrothermoelastic material in a temperature field. The electro magnetic field 
inside the crack was taken into account and closed form solutions were derived for an impermeable and 
permeable crack (Rogowski, 2011). Wang and Mai (2007) and Rogowski (2007) discussed the different 
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electromagnetic boundary conditions on the crack- faces in PEMO – elastic materials. On the other hand, 
Zhong and Li (2007; 2008), Rogowski (2007), Zhong (2009) extended the semi permeable crack face electric 
boundary conditions proposed by Hao and Shen (1994) to analyze the PEMO elastic fields induced by 
dielectric cracks. However, all of the studies considered only infinite body and numerical procedures were 
used to obtained the results of approximate type. To the best of the author’s knowledge, the penny shaped 
crack problems for the layer and limited permeable cracks have not been addressed yet, in an exact form. 
Motivated by this the author of this paper investigates a PEMO elastic layer, with an electrically and 
magnetically conducting crack under prescribed displacement, electric potential and magnetic potential 
boundary loading, to show exact solutions. Such solutions depend on a large number of material parameters, 
in our analysis it is seventeen, making any solution other than explicit analytical ones impractical. 
 
2. Basic equations in magnetoelectroelastic theory 
 
 The constitutive equations within the framework of the linearly magnetoelectroelastic theory, in an 
axially symmetric problem, can be written as 
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where ru , zu ,  ,   are the elastic displacement, electric potential and magnetic potential, respectively; r
,  , z , rz , rD , zD , rB , zB , rE , zE , rH , zH  are the components of stress, electric displacement, 

magnetic induction, electric field and magnetic field, respectively; kle , klq  and kld  are the piezoelectric, 

piezomagnetic and magnetoelectric constants, respectively; klc , kl  and kl  are the elastic stiffness, the 

dielectric permittivities and the magnetic permeabilities, respectively. 
 Moreover, from the equations of equilibrium 
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the elastic displacements, electric potential and magnetic potential will satisfy the basic governing equations 
as follows 
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where the following differential operators are introduced 
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 The general solution of Eqs (2.3) are as follows 
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 The functions    , , , ,i ir z i 1 2 3 4   satisfy the following mono harmonic equations 
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  (2.6) 

 
where i iz z   and i , satisfying  Re i 0  , are the four eigenvalues of the characteristic equation which 

is an eight degree polynomial 
 

  .8 6 4 2a b c d e 0           (2.7) 
 
 The material parameters a , b , c , d  and e are defined in the Appendix by Eq.(A1). The parameters 

jia ; , , ,j 1 2 3 4 ; , , ,i 1 2 3 4  are given as follows 



156                                                                                                                                                                       B.Rogowski 

  
6 4 2

j i j i j i j
ji 6 4 2

2 i 2 i 2 i 2

a b c d
a

a b c d

     


     
  (2.8) 

 
where ja , jb , jc , jd  are given in the Appendix by Eq.(A2). Note that 2ia 1 . 

 Then from Eqs (2.1) together with (2.5) the components of stress, electric displacement and magnetic 
induction can be derived. 
 We have 
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 It should be noted that the general solutions given by Eqs (2.5) and (2.9) are valid for the cases when 
the eigenvalues i   , , ,i 1 2 3 4  are distinct. In this paper, equal roots (the special cases) are viewed as the 

limiting case of the distinct roots. For a pure piezoelectric medium we have 7ia 0  and 4ia 0  and 
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 It is easily verified, by direct substitution, that the equilibrium Eqs (2.2)1,2, electric and magnetic 
charge conservation Eqs (2.2)3,4 are satisfied by general solution (2.9). 
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3. Penny shaped dielectric and magnetic crack in the PEMO elastic layer 
 
 Consider a penny shaped dielectric and assume that a magnetic crack is located in the middle plane 
of a transversely isotropic PEMO elastic layer as shown in Fig.1a. The cylindrical coordinate system 

 , ,r z  is used with the poling axis as the z  axis. It is further assumed that the crack is centrally situated at 

the circle ar   and the width of a layer is 2h . A constant displacement 0 , electric potential 0  and 

magnetic potential 0  are imposed on the layer surfaces, namely 
 

       , ; , ; , .z 0 0 0u r h r h r h              (3.1) 
 

 
 

Fig.1a.  Geometry of a magnetoelectroelastic layer with a penny shaped crack; the quantities * , *D  and 
*B  are in the circular region ar   in a plate without a crack. 

 

 
 

Fig.1b.  The illustration of the boundary conditions; the following should be added to the crack surface: * , 
*D  and *B ; zr 0   at .z 0  

 
 Equations (3.1) indicate that the top and bottom surfaces of the layer, y h  , are sliding clamped 

and displaced along the z  direction by an amount of 2  and there is a constant electric potential difference 

02   and a constant magnetic potential difference 02   between the top and bottom surfaces. These 
equations give, in the layer without the crack, the particular solution 
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where zE  is the Young modulus in the z  direction. 
 By superposition principle the crack problem is equivalent to the perturbation problem under the 
applied loading on the crack surface and condition of symmetry on the plane z 0  outside the crack region. 
 

       * * *, ; , ; , ; ,z z c z cr 0 D r 0 D D B r 0 B B r a          (3.3) 
 

   , ; ,zr r 0 0 r 0     (3.4) 
 

       , ; , ; , ;zu r 0 0 r 0 0 r 0 0 r a        (3.5) 
 

where * , *D , *B  are constant which from Eq.(3.2) are given by formulae 
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 In the above equations zE  and rz  are the Young modulus and Poisson’s ratio in the principal 

direction of anisotropy, the z  axis. In Eq.(3.3) cD  and cB  are normal components of the electric 

displacement and the magnetic induction, respectively, on the crack faces and inside the crack region, which 
for semi permeable crack face magnetoelectric boundary conditions are expressed as follows 
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where c r 0     ( , /12
0 8 85 10 F m    the dielectric permittivity of air) and c r 0     (

/7 2
0 4 10 N A    - the magnetic permeability of air) are the electric permittivity and magnetic 
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permeability of the medium inside the crack;  ,   and zu  are the jumps of the electric potential, 
magnetic potential and crack opening displacement, respectively, across the crack. Especially, one can see 
that the crack reduces to an air when r 1   and r 1  . If the crack is filled by silicone oil, then ,r 2 5  ; 

in the case of water r 81  . 
 
4. Solution method 
 
 To solve the mixed boundary value problem on the crack plane, we express the solution for mono 
harmonic functions  ,i ir z   as the following Hankel integrals 
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where  iA   are the unknowns  , , ,i 1 2 3 4  to be obtained from the boundary conditions and  0J r  is the 

Bessel function of the first kind and zero order, and i  are the roots of the characteristic Eq.(2.7). Since i  

are the roots of the characteristic Eq.(2.7) it should be pointed out that the roots satisfying  Re j 0   are 

only chosen and used in Eq (4.1) to satisfy the regularity condition at infinity. 
 Then from Eq.(2.9) the components of displacements ru  and zu , potentials   and  , stresses r , 

 , z , rz , electric displacement rD  and zD  and magnetic induction rB , zB  can be derived. We have 
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 The resulting expressions and boundary conditions (3.3), (3.4) and (3.5) are 
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 On the plane hz   we have satisfied the boundary conditions (3.1) and  ,rz r h 0   and in addition 
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 The boundary conditions (3.1), which give the boundary values (4.9), are of sliding clamped type 
with prescribed axial displacement 0  and electric, and magnetic potentials 0  and 0 , respectively. 

 For convenience, we introduce three new functions  U  ,     and    , such that 
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and where “–1” denotes the inverse matrix. 
 The constants  iA   are obtained as follows 
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where sums are from 1 to 4. 
The material parameters id , il , and ik ; , , ,i 1 2 3 4 , are 
 

        ,1 52 33 44 43 34 53 34 42 32 44 54 32 43 33 42d a a a a a a a a a a a a a a a       
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        ,3 51 34 32 52 31 34 54 32 31k a a a a a a a a a       
 

       .4 51 32 33 52 33 31 53 31 32k a a a a a a a a a        



162                                                                                                                                                                       B.Rogowski 

 The boundary conditions (4.6), (4.7) and (4.8) give a system of coupled integral equations for  U  , 

    and     in the following form 
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 Introduce the new functions  if x   , ,i 1 2 3  and the following Fourier integral representation of 
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then 
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where  H  is the Heaviside function, we find that the boundary conditions (4.20) are automatically 
satisfied. Moreover, the displacement, electric potential and magnetic potential on the crack plane can be 
expressed in terms of the introduced unknown functions as 
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 Multiplying both sides of Eqs (4.17), (4.18) and (4.19) by 2 2r s r , integrating with respect to r  

from 0 to x   x 0 , respectively, and using the following identities 
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where     is the Dirac delta function, Eqs (4.17), (4.18) and (4.19) can be rewritten as 
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where the kernel functions  ,iK x s  are defined as follows 
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 Next, the solutions of electric displacement and magnetic induction inside the crack are of interest. 
Application of Eqs (3.7) and (4.25) leads to 
 

  

   

   

; ,

; .

a a
1 2

c r 02 2 2 2
r r

a a
1 3

c r 02 2 2 2
r r

f s f s
D ds ds 0 0 r a

s r s r

f s f s
B ds ds 0 0 r a

s r s r

     
 

    
 

 

 

  (4.29) 

 
 Differentiating both Eqs (4.29) with respect to r  and using the following rule of differentiation 
under integral sign 
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Equations (4.29) may be rewritten as follows 
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 The first terms in both Eqs (4.31) are singular at r a 0  , while other terms tend to zero in at this 
point. For the singularity to vanish at r a 0  , it must be true that 
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 Equations (4.32) determine unknown quantities cD  and cB . The relations are non linear since  1f a , 

 2f a  and  3f a  depend also on cD  and cB , as shown in Eqs (4.27). Equations (4.32) form two coupling 

quadratic equations with respect to cD  and cB . Those are dependent on the material properties, electric 

permittivity and magnetic permeability of the crack interior and applied loadings. In addition, it is found that 
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the kernel function  h;s,xKi  depends on the width of the layer cD  and cB  also depends on h . Moreover, 

although these are at most four pairs of roots of cD  and cB  according to the nonlinear Eqs (4.32) only one pair 

is reasonable and the other are superfluous. The acceptable cD  and cB  should be located at the range between 

that for a magneto electrically impermeable crack (zeroes values) and that for a magneto – electrically 
permeable crack (the extremally possible values). Four ideal crack face electromagnetic boundary conditions: 
(i) cD 0  and cB 0 , (ii) cD 0  and cB 0 , (iii) cD 0  and cB 0 , (iv) cD 0  and cB 0  are the 
limiting cases of the electromagnetically semi permeable crack model (“dielectric and magnetic crack”). 
 
5. The exact solution of Fredholm integral equation 
 
 Using the known result 
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i

n 1

h 1 2 e


  



     ,  (5.1) 

 
we find that the kernel function (4.28) is 
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Consequently, Eqs (4.27) can be rewritten as 
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  (5.3) 

 
 This Fredholm integral equation of the second kind (5.3) can be solved explicitly. The method of 
consecutive iteration yields the N th approximation 
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where 
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  (5.5) 

 
and the superscript “–1” denotes the inverse of a matrix  . 
 The sum of infinite geometric series converges to the solution as N , giving 
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  (5.6) 

 
 The range of convergence is given by the inequality 
 

   inF x 1 ,  (5.7) 

 
and is satisfied for all of 0 x a   and h/a . For the limiting case of an infinite magnetoelectroelastic space 

 , /inF x a h 0  as h . On the other hand, for a very thin plate  h/a,xFin  tends to unity since 

h 0 . To check the above results, it is natural to consider the special case where a dielectric crack is 
embedded in an infinite magnetoelectroelastic material, i.e., h . One can find that the solution may be 
solved explicitly. This solution is given in Appendix B. 
 
6. Analysis of field intensity factors 
 
 Defining the field intensity factors as follows 
 

     limq
r a

K 2 r a q r


     (6.1) 

 
where q  stands for z , zD  and zB , respectively, we then find that the intensity factors of stress, electric 
displacement and magnetic induction can be expressed as 
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where 

 .in
i
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nh
 


 (6.3) 

 
 The first closed form solutions, for an infinite medium, are identical with the known result given by 
Zhong and Li (2007) through a different approach. Similarly, the field intensity factors associated with the 
crack opening displacement  ruz , electric potential  r  and magnetic potential  r  across the crack 

near the crack front are defined and easily derived from Eqs (4.25) as 
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Figures 2 and 3 show the variation of the functions  f   and     /f 1 f   , respectively. 
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Fig.3. The variation of the function     /f 1 f    with  . 
 

 These field intensity factors can be presented explicitly 
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Note that 
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where the matrix / 2m  may be partitioned as 
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piezomagnetic magnetoelectric magnetic

 
 
 
  

. 

 

 For the piezoelectric barium titanate BaTiO3 and piezomagnetic cobalt iron oxide CoFe2O4 
composite (roughly 50:50 percent) we have 
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 The non zero magnetoelectric constant , /9
11d 16 7 10 C Am     exists only in the piezoelectric / 

piezomagnetic composite as a significant new feature. 
 The electric displacement cD  and magnetic induction cB  inside the crack are obtained from Eqs 

(4.32), i.e., 
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(6.8) 

 
7. Magnetoelectrically permeable crack 
 
 For a magnetoelectrically permeable crack case both electric and magnetic potentials are continuous 
across the crack surfaces. Thus the problem can be reduced to the following Fredholm integral equation of 
the second kind 
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  (7.1) 

 
 The solution of the integral equation is given explicitly 
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 The field intensity factors can finally be expressed as 
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 Equations (7.3) indicate that the four field intensity factors of COD, stress, electric displacement and 
magnetic induction depend on one another through material constants and thickness of the layer. In addition, 

cD  and cB  have no effect on these field intensity factors. For the barium titanate cobalt iron oxide 

composite material the elastic stiffness / 2m m  piezoelectric coefficient /5 2m m  and piezomagnetic 

coefficient /9 2m m  are obtained as follows: , /9 262 5 10 N m ; , / 214 3C m ; , /37 0 10 N Am . 
 
Appendix A 
 
 The material parameters in the characteristic Eq.(2.7) are as follows 
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 Material coefficients in Eqs (2.8) 
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 The coefficients 4a , 4b , 4c , 4d  are obtained from coefficients 3a , 3b , 3c , 3d  by replacement of 

iid  by ii  and klq  by kle  and changing the signum. 
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 If only a pure piezoelectric or pure piezomagnetic material is considered, then the electric or 
magnetic potential is defined by a polynomial of   which is given as follows 

 4 2
44 33 11 33 13 13 44 11 44c c c c c c 2c c c        . This polynominal vanishes for a pure elastic transversely 

isotropic material without piezoelectromagnetic properties. 
 The roots of the characteristic Eq.(2.7) are presented by formulae 
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Appendix B 
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the physical quantities are obtained as follows 
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 The following integrals are used 
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and i  are the roots of Eq.(2.7) with positive real parts. 

 
Nomenclature 
 
 a – radius of the penny – shaped crack 
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 cB  –  magnetic induction supported by the crack gap 

 rB , zB  –  magnetic induction components 

 cD  –  electric displacement supported by the crack gap 

 rD , zD  –  electric displacement components 

 rE , zE  –  electric field components 

 rH , zH  – magnetic field components 

 11d , 33d  –  magnetoelectric constants 

 15e , 31e , 33e  –  piezoelectric constants 

 mJ  –  Bessel function of the first kind of order m  

 IK  –  mode I stress intensity factor 

 DK  –  electric displacement intensity factor 

 BK  –  magnetic induction intensity factor 

  *
I 0K 2 a    –  the classical result 

 r –  radial coordinate 
 15q , 31q , 33q  –  piezomagnetic constants 

 ru , zu  –  components of displacement vector 

 z –  vertical coordinate 
 zu  –  crack opening displacement 

   –  drop in electric potential across the crack 
   –  drop in magnetic potential across the crack 
 11 , 33  –  dielectric constants (permittivities) 

 c r 0     –  dielectric constants of the material within the crack gap 

 . /12
0 8 85 10 F m    –  dielectric permittivity of air (or vacuum) 

 11 , 33  –  magnetic constants (permeabilities) 

 c r 0     –  magnetic permeability of the material within the crack gap 

 /7 2
0 4 10 N A    –  magnetic permeability of air (or vacuum) 

 rr ,  ,... – components of stress tensor 

   –  electric potential 
   –  magnetic potential 
 rr ,  ¸ zz ¸ rz  –  components of stress tensor 

   –  Hankel parameter 

  , , ,i i 1 2 3 4   –  dimensionless roots appearing in general solution (eigenvalues defined by Eq.(2.7)) 
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